Ng§9-16336
| T

Roger Racine
C.S. Draper Laboratory
555 Technology Sq.
Cambridge, MA 02139
(617) 258-2489

Abstract

There are many problems associated with distributing an Ada program
over a loosely coupied communication network. Some of these problems
involve the various aspects of the distributed rendezvous. The problems
addressed in this paper involve supporting the 'delay' statement in a
selective call and supporting the 'else' clause in a selective call.
Most of these difficulties are compounded by the need for an efficient
communication system. The difficulties are compounded even more by con-
sidering the possibility of hardware faults occurring while the program
is running. With a hardware fault tolerant computer system, it is pos-
sible to design a distribution scheme and communication software which
is efficient and allows Ada semantics to be preserved. An Ada design
for the communications software of one such system will be presented,
including a description of the services provided in the seven layers of
an International Standards Organization (ISO) Open System Interconnect
(0SI) model communications system. The system capabilities (hardware
and software) that allow this communication system will also be
described.

Background

There are many reasons for using distributed computer systems. Key
among these is the ability to recover when a fault occurs in one of the
computing sites. Other reasons include increased throughput and sepa-
rate subsystem development by different contractors (or the ability to
buy off-the-shelf subsystems).

The Ada programming language has the concept of parallelism built in
(in the form of tasks). To expand this concept to include running one
Ada program on multiple computers, with communication taking place over
some network, creates a number of problems. One must consider how to
specify the location of processes, the distributed elaboration of the
program, whether the various software engineers involved are able to
tell where various components will be located, what should happen in the
case of hardware faults, and how to implement the various communication
mechanisms available in Ada.

EQ2.1 .1



In the interest of space, the focus of this paper will be in the
area of the distributed Ada rendezvous. In a rendezvous, one task calls
an "entry'" in another task. The first task then waits for the server
task to '"accept" the call. Conversely, if the server task attempts to
accept the call before it is made, it will wait. When the caller and
server both have arrived, the rendezvous occurs, with parameters passed
to the entry, a block of code executed, and any output parameters passed
back to the caller. The two tasks are then free to execute again in

paraliel.

That is the simple rendezvous. Ada also provides selective calls
and selective accepts, timed calls and timed accepts, and guarded
accepts.

A selective call is a call which must be accepted immediately. If
any other task is being served, or the server task is anywhere in its
execution except waiting at the accept statement, the call is cancelled.
The language requires that the server task be checked to determine if
the entry is available. It is necessary, therefore, for two messages to
be sent over the network to obtain the information. The first message
will ask for the rendezvous; the second will either be a message saying
the rendezvous could not be accepted or else the second will contain the
result of the rendezvous.

A timed call is one which must be accepted within a given amount of
time. The call will be cancelled if it is not accepted within that time.
The semantics of a timed call are different depending on the value of
the delay. If the delay is zero or is negative, the semantics of a
selective call will be followed. At least two communication messages
must be sent over the network. However, if the delay is positive, and
the rende2vous is known, by the caller, not to be able to occur within
the delay period, it is not necessary to even attempt the rendezvous.
All that is necessary is to wait the delay period before giving control
back to the calling task. No communications over the network will be
required in this case.

A selective accept allows a server task to accept a call to one
entry arbitrarily from among a list.

A timed accept allows a server to wait only a finite time for a task
to call one of its entries. At the end of the time period, if no task
has called, the server task will regain control, and will execute alter-
nate code. : .

A guarded accept allows a server to accept, in a selective accept,
one of a2 list of entries based on conditions. The conditions on accept-
ing the various entries will be checked at run-time, and one of the
open'' entries will be picked.

The selective accept, the timed accept and the guarded accept can

all be managed on the server task's processor, without any network com-
munication.

E.2.1.2



To a designer of a distributed computer system, these built-in con-
structs raise a number of issues:

e Should one even allow the use of the Ada constructs when communi-
cating between two tasks on different computers? Specific commu-
nication packages could be provided instead, with pragmas used to
make the Ada constructs 'erroneous'. The assumption used here is
that the Ada constructs should be used so that the application
does not need to know where various tasks are.

e What happens if a task does a timed entry call, but the computer
of the called task fails at some time before the rendezvous
occurs? It is possible to send enough messages to ensure that
the Ada semantics are followed, even in the case of failures, but
the time involved in transferring the messages is large. If the
rendezvous is extremely inefficient, it is not usable.

o The rendezvous semantics specify that once the rendezvous has
started, it must complete before the calling task can continue.
What should happen if the processor running the server task fails
during the rendezvous?

The AIPS Project

For the Advanced Information Processing System (AIPS), reliability
is the most important issue, with efficiency also being a priority
issue. The NASA sponsored AIPS project will produce a flexible, fault
tolerant, distributed, real-time computer system. It has been designed
in terms of "building blocks", such that different applications, such as
deep space probe or a manned space station, could use the components.

The building blocks incliude the following (this is not an exhaustive
list. It only includes those blocks pertaining to intertask communi-
cation) :

] Fault Tolerant Processors (FTPs). One FTP consists of two
(duplex) or three (triplex) microprocessors, each executing iden-
tical instructions. A triplex FTP has the ability to mask a sin-
gle fault from the rest of the system. A duplex FTP can determine
that a fault exists.

] A fault tolerant Intercomputer (IC) network. This network is a
triplicated circuit-switched nodal network with sufficient 1inks
in each network to be able to reach all FTPs on the network after
experiencing a single fault in the network. Because the network
is triplicated, it is possible to have reliable communication
with multiple faults.

e Systems software flexible enough to handle an arbitrary number of

FTPs connected to the network. The network management process
must be able to recognize faults in the network, and reconfigure

£.2.1.3



it automatically (and invisibly to applications processes). The
communications software must allow for any number of FTPs to com-
municate. Systems management software must be able to reconfig-
ure the system (functionally “move'" a group of tasks from one FTP
to another) if extreme failures occur. Local FTP management
software must be able to reconfigure the FTP in the presence of
processor failures (downmode to a duplex from a triplex, for
example) .

° Local Operating System (0S) software capable of working alone
(simplex), in duplex or in triplex. The local 0S is concerned
with the tasks on one FTP (the local scheduler, local rendezvous
software, etc.).

Fault Tolerant Distributed Ada

In the absence of fault tolerance, it is difficult to design a ren-
dezvous scheme between tasks on different computers without multiple
transmissions over the network to ensure processors remain active
throughout the wait for the rendezvous. A message would need to be sent
to request a rendezvous. An acknowledgement would be necessary within
some time limit in the case of a timed or selective call, to make sure
the call has been received and put on the queue. Another message would
need to be sent stating that the entry is accepting the call., If the
caller is making a timed call, and the delay runs out before this mes-
sage is received, a message could be sent to take the call off the
queue. Finally, the results of the rendezvous can be sent back to the
caller.

These messages make up a minimal set of transmissions over the net-
work at the highest level. There might be other transmissions at a lower
level to make certain that each complete message is received correctly.

In the fault tolerant AIPS system, the problem of unknown processor
failures does not exist. If one of the processors in an FTP fails, the
fault is detected. If possible (in a triplex FTP, for example), proc-
essing continues normally. If it is not possible to isolate the fault,
the System manager will reconfigure such that functions on the failed
FTP are run on a different FTP.

For this type of system, it is possible to design an efficient com-
munication service to implement the Ada rendezvous. Because the tasks
involved are virtually assured of continuing execution throughout the
rendezvous, little error detection needs to be done in the communi-
cations software of the processor containing the calling task.

For the case of the timed rendezvous, with a positive delay value,
the design calls for the operating system on the called processor to
time the wait, if the delay value is larger than the minimum necessary
to transmit the rendezvous request and receive a response back. If the
entry is not accepted within the given amount of time, a message will be

E.201 .4



sent back to the calling processor, and the calling task can execute
alternate code. The only messages that need to be sent would be the
initial message that the caller wants to communicate, and the final mes-
sage that the server is finished (for whatever reason). If the delay
amount is smaller than the minimum needed to transfer messages, ho com-
munication is needed. The calling task can be given control back after
the specified delay.

If the delay amount is zero or negative, or if it is a conditional
call, the messages still must be sent, and the rendezvous might occur.

The IC network services will keep track of whether the called task
is moved from one FTP to another. It is also possible that the network
will be reconfigured while the tasks are waiting to communicate. All of
this will be transparent to the application program.

The design for the intertask communication has been subdivided into
two parts, the local communication and the interprocessor communication.
The local communication consists of the '"normal'" rendezvous between two
colocated tasks. The interprocessor communication consists of doing the
same thing across an IC network.

The "glue'" between these two services is called the ''context manag-
er', Its function is to determine, for each attempted rendezvous,
whether the called entry is on the same processor as the calling task.
If it is, the local communication service is invoked. If the called
entry is on some other processor, the IC network service is invoked.

The design of the context manager includes a table of locations of
what are known as 'migratables'. As was mentioned above, when a fault
is detected, tasks can be transferred to another FTP. The tasks will be
grouped into large units. All the tasks within a migratable unit will
always be colocated; if they are moved, they will move as a block.
Therefore, the table of locations can be organized hierarchically. This
will allow a fast algorithm to be designed to determine in which FTP a
called task is being run.

The network services are organized into layers, as in the ISO Open
Systems Interconnect model. The highest layer, the Application layer,
will provide the interface between the context managers on the FTPs, and
the IC network.

The interface between the context manager and the IC network has
been designed to be as similar as possible to the interface between the
context manager and the local communication service. This is not a
necessity, but since the context manager is a potential bottleneck,
there should be no translation of data to support different interfaces.

The Application layer is responsible for the Ada rendezvous seman-
tics. When a rendezvous is with a task on another FTP, this layer must
make sure the semantics are followed. With a fault tolerant system,
this layer is fairly simple. At system initialization, a table of task
to task communications is used to create logical connections between
each pair. When the rendezvous is actually requested by the caller,

£E.2.1.5




this layer sends the input parameters, along with the timeout value, to
the Application layer on the server's FTP. The server's Application
layer calls the server with the appropriate delay (adjusted to take into
account communication delays). When the rendezvous is complete, the
Application layer returns output parameters. If an exception is raised
or the call times out, a message is sent back to the caller specifying
the problem. The Application layer on the caller's FTP then either
gives control back to the caller at the appropriate point or raises the
specified exception to the caller.

The other layers, except the lowest software layer (the Network
layer), are designed to support general network services (not just Ada
communication), and are not affected by the fault tolerance of the sys-

tem.

The Presentation layer is responsible for translating data when the
format on the receiver is different from that on the sender. The system
being built (the proof of concept, or POC, system) has all processing
sites identical; therefore no transformation routines will be coded.

The Session layer is responsible for verifying the legitimacy of the
communication. It is possible for users (in some anticipated applica-
tions) to attempt to communicate with tasks to which they should not be
allowed access. A table of allowed communications will be checked for
all connections.

The Transport layer is responsible for determining the hardware des-
tination of the communication. It will have a table of locations for
the various tasks. If a communication destination is changed (if a task
is moved to another processor), this layer will be notifiéd so that com-
munication can continue.

The Network layer is responsible for detecting and masking hardware
faults. On a triplex FTP, each processor is connected to one of the
three IC networks for transmission. Each processor has receivers all
three networks. Masking faults is not trivial when receiving messages
from processors which: are not fault tolerant, are duplex FTPs or are
triplex FTPs. It is, however, still much faster than detecting faults
through multiple acknowledgments at the Application layer. 1In fact, in
the usual case of no faults, a triplex FTP's Network layer needs to do
very little processing to obtain (reliable) data for each of the three
processors. It is only in the presence of faults that extra processing
needs to be done.

The QDatalink layer is responsible for sending packets across the
network. It contends with the other FTPs for the network using a modi-
fied Laning poil which allows one triplex FTP to win the triplicated
network in the presence of a single fault. This protocol is somewhat
more complex than is necessary for a single network. This added com-
plexity, on the POC, adds a 10% overhead on each transmission. The
Datalink layer uses the HDLC protocol to transmit data over each net-
work.

E‘2Q1 '6



The Hardware layer has two bit-protocols: the data bit and the poll
bit'

Conclusion

In the presence of faults on a system which is not fault tolerant,
it is difficult to design an efficient communication system to support
the Ada rendezvous. For the fault tolerant AIPS computer system, howev-
er, it is much easier to design the upper layers of the ISO OSI communi-
cations model. The Network layer and the Datalink layer each have more
processing to do for each communication, but the amount of processing is
small when there are no errors occurring, and the number of communi-
cations can be reduced to two at the Application layer.

The result is an extremely reliable, efficient communication system
allowing Ada tasks to communicate as if they were on the same FTP.

Distributed systems have many benefits. The distribution allows the
system to run in parallel, giving more throughput than in a nondistrib-
uted system. The distribution allows the system to be reconfigured in
the presence of faults. The distribution allows the system to be able
to continue in the presence of damage, by putting the various computers
in different parts of the vehicie. Adding hardware fault tolerance com-
plements the distribution by allowing the software to isolate faults and
in many cases to mask the fault. This allows software systems such as
the communication system to be much simpler than in systems which are
not fault tolerant.

E.201 .7



